Math 255B Lecture 16 Notes

Daniel Raban

February 12, 2020

1 Closure of Quadratic Forms

1.1 Quadratic forms bounded below

Last time, we introduced the notion of quadratic forms: Let $q: D \to \mathbb{R}$ be a symmetric quadratic form. We say that q is **bounded below** if there is a c such that $q(u) \ge -c||u||^2$ for $u \in D$.

Example 1.1. Let $H = L^2(\mathbb{T}), \mathbb{T} = \mathbb{R}/2\pi\mathbb{Z}$, and $V \in L^1(\mathbb{T}; \mathbb{R})$. Let

$$q(u) = \int (|u'|^2 + V|u|^2) dx, \qquad D = D(q) = H^1(\mathbb{T}) \subseteq L^{\infty}(\mathbb{T}).$$

Formally, $q(u) = \langle Pu, u \rangle_{L^2}$ with $P = -\partial_x^2 + V(x)$.

We claim that q is bounded below: For every $\varepsilon > 0$, there is some $V^{\sharp} \in L^{\infty}(\mathbb{T})$ such that $\|V - V^{\sharp}\|_{L^{1}} \leq \varepsilon$. Then, keeping in mind that $\|u\|_{H_{1}}^{2} = \|u'\|_{L^{2}}^{2} + \|u\|_{L^{2}}^{2}$,

$$q(u) = \int |u'|^2 + \underbrace{\int V^{\sharp} |u|^2}_{\geq -C_{\varepsilon} \|u\|_{L^2}^2} + \underbrace{\int (V - V^{\sharp}) |u|^2}_{\geq -O(\varepsilon) \|u\|_{H^1}^2}$$

$$\geq (1 - O(\varepsilon)) \|u\|_{H^1}^2 - C_{\varepsilon} \|u\|_{L^2}^2$$

for all $\varepsilon > 0$. We get that there exist c > 0, C > 0 such that

$$q(u) \ge c \|u\|_{H^1}^2 - C \|u\|_{L^2}^2, \qquad \forall u \in D(q).$$

Remark 1.1. We can always add a constant multiple of ||u|| to q, so from now on, we will assume that q is nonnegative. This allows us to use the Cauchy-Schwarz inequality:

$$|q(u,v)| \le q(u)^{1/2} q(v)^{1/2} \qquad \forall u, v \in D(q).$$

1.2 Closed quadratic forms

Definition 1.1. Let $u_n \in D(q)$ and $u \in H$. We say that u_n is *q*-convergent to *u* (written $u_n \xrightarrow{q} u$) if $u_n \to u$ in *H* and $q(u_n - u_m) \xrightarrow{n,m\to\infty} 0$. We say that *q* is closed if whenever $u_n \xrightarrow{q} u$, $u \in D(q)$ and $q(u_n - u) \to 0$.

Remark 1.2. Let $H_q = D(q)$, equipped with the scalar product $\langle u, v \rangle_q := q(u, v) + \langle u, v \rangle$. Then q is closed if and only if H_q is a Hilbert space.

Let's return to our example.

Example 1.2. Let $q(u) = \int (||u'|^2 + V|u|^2)$ on $D(q) = H^1(\mathbb{T})$ with $V \in L^1(\mathbb{T})$. Then $q(u) \ge c ||u||_{H^1}^2 - C ||u||_{H^1}^2$, so the quadratic form $u \mapsto q(u) + C ||u||_{H^1}^2$ is closed. Indeed,

$$||u||_q^2 := q(u) + (c+1)||u||_{H^1}^2$$

and this inequality tells us that $||u||_q \sim ||u||_{H^1}$ for $u \in D(q)$.

1.3 Closable quadratic forms

Definition 1.2. We say that q is **closable** if it has a closed extension $\tilde{q} : D(\tilde{q}) \to \mathbb{R}$: $D(q) \subseteq D(\tilde{q})$ and $\tilde{q}|_{D(q)} = q$.

Proposition 1.1. A quadratic form q is closable if and only if whenever $u_n \xrightarrow{q} 0$, then $q(u_n) \to 0$. If this condition holds, then q has a smallest closed extension \overline{q} (the **closure** of q) given by $D(\overline{q}) = \{u \in H : \exists u_n \in D(q) \text{ s.t. } u_n \xrightarrow{q} u\}$ and $\overline{q}(u) = \lim_{n \to \infty} q(u_n)$.

Proof. (\implies): Let \tilde{q} be a closed extension. If $u_n \xrightarrow{q} 0$, then $u_n \xrightarrow{\tilde{q}} 0$, so $\tilde{q}(u_n) = q(u_n) \to 0$. (\Leftarrow): Assume that the condition holds, and let $u_n \xrightarrow{q} u$. We claim that $\lim_{n\to\infty} q(u_n)$ exists.

$$|q(u_n) - q(u_m)| = |q(u_n, u_n) - q(u_m, u_m)|$$

= |q(u_n - u_m, u_m) + q(u_m, q_n - u_m)
$$\stackrel{\text{C-S}}{\leq} q^{1/2}(u_n - u_m)q^{1/2}(u_n) + q^{1/2}(u_n - u_m)q^{1/2}(u_m).$$

So we get

$$|q^{1/2}(u_n) - q^{1/2}(u_m)| \le q^{1/2}(u_n - u_m) \xrightarrow{n, m \to \infty} 0.$$

The claim follows, and if $v_n \xrightarrow{q} u$, then $u_n - v_n \xrightarrow{q} 0$:

$$q^{1/2}(u_n - v_n - u_m + v_m) \le q^{1/2}(u_n - u_m) + q^{1/2}(v_n - v_m) \to 0.$$

By the assumed condition, $q(u_n - v_n) \rightarrow 0$. And by the same argument as before,

$$|q^{1/2}(u_n) - q^{1/2}(v_n)| \le q^{1/2}(u_n - v_n) \to 0.$$

We get a well-defined quadratic form \overline{q} which extends q.

We claim that \overline{q} is closed; that is, we check that $H_{\overline{q}} = D(\overline{q})$ is complete with respect to $\langle u, v \rangle_{\overline{q}} = \overline{q}(u, v) + \langle u, v \rangle$. H_q is dense in $H_{\overline{q}}$, as if $u_n \in H_q$ with $u_n \xrightarrow{q} u \in H_{\overline{q}}$, then $\overline{q}(u_n - u) \to 0$:

$$\overline{q}(u_n - u) = \lim_{m \to \infty} q(u_n - u_m) \xrightarrow{n \to \infty} 0.$$

Every Cauchy sequence in H_q has a limit in $H_{\overline{q}}$, so we have a dense subset where every Cauchy sequence has a limit. So $H_{\overline{q}}$ is complete.

Finally, one checks that if \tilde{q} is a closed extension of q, then $\bar{q} \subseteq \tilde{q}$.

Theorem 1.1. Let q be a nonnegative, symmetric, quadratic form. Assume that D(q) is dense and that q is closed. Then there exists a unique self-adjoint operator \mathscr{A} such that $D(\mathscr{A}) \subseteq D(q)$ and $q(u, v) = \langle \mathscr{A}u, v \rangle$ for all $u \in D(\mathscr{A}), v \in D(q)$. Also, $D(\mathscr{A})$ is a core for q in the sense that $D(\mathscr{A})$ is dense in H_q .